Pre-class Warm-up!!!

1. What surface does the function

$$
\mathbb{T}(1,1)-(u \cos v u s
$$

parametrize?
a. a cone
b. a cylinder
c. a helicoid ( a spiral ramp )
d. a sphere
e. None of the above.
2. Which integral computes its area?
a. $\int_{0}^{2 \pi} \int_{0}^{1}\left\|\Phi_{2 \pi}\right\| d u d v$
b.

$$
\int_{0}^{2 \pi} \int_{0}^{1}\left(T_{u} \times T_{v}\right) \cdot d S
$$

c.
d. $\int_{0}^{2 \pi} \int_{0}^{1} d u d v$
e. None of the above

Section 7.5 Surface integrals of functions.
We learn:

- the same as in section 7.4 (which was about finding surface area) made a bit more complicated by integrating a scalarvalued function over some surface.
- We don't really need page 396: Integrals over graphs.

Recall: the area of a surface $S$ parametrized by a function $(x, y, z)=\operatorname{Phi}(u, v)$ is given by

$$
A=\iint_{D}\left\|T_{u} \times T_{v}\right\| d u d v=\iint_{S} d S
$$



$$
T_{u}=\left(\frac{\partial x}{\partial u}, \frac{\partial y}{\partial u}, \frac{\partial z}{\partial u}\right), T_{v}=\left(\frac{\partial x}{\partial v}, \frac{\partial y}{\partial v}, \frac{\partial z}{\partial v}\right)
$$

New formula. We suppose we have a function $f: R \wedge 3->R$.

$$
\iint_{S} f d S=\iint_{D} f(\Phi(u, v))\left\|T_{u} \times T_{v}\right\| d u d v
$$

new notation
Interpretation:

1. We extend integrals from integrating over a flat region of $\mathbb{R}^{2}$ to a curvy
region. region.
2. If the surface is a film of varying density $f(x, y, z)$ at $(x, y, z)$ in $\mathrm{gm} / \mathrm{cm}^{2}$ then the mass of the $\hat{15} 1 \mathrm{~m}$

$$
\iint_{S} f d S
$$

Step 3 The integral is

$$
\int_{0 \leq u^{2}+v^{2} \leq 4} u(1+2 u-3 v) \sqrt{14} d u d v
$$

Step 4 Use polar coordinates $(r, \theta)$

$$
\int_{0}^{2 \pi} \int_{0}^{2} r \cos \theta(1+2 r \cos \theta-3 r \sin \theta) \sqrt{14} r d r d \theta
$$

Sep 1: Parametrize S,

$$
\begin{aligned}
& \text { which is the graph of } \\
& f(x, y)=1+2 x-3 y \\
& \text { Take } \\
& \Phi(u, v)=(u, v, 1+2 u-3 v)
\end{aligned}
$$



$$
\begin{aligned}
& 0 \leqslant u^{2}+v^{2} \leqslant 4 \\
& \text { Step } 2 T_{u}=(1,0,2) \quad T_{v}=(0,1,-3) \\
& T_{u} \times T_{v}=(-2,3,1),\left\|T_{u} \times T_{v}\right\|=\sqrt{4+9+1}=\sqrt{14}
\end{aligned}
$$ that lies inside the cylinder $x^{\wedge} 2+y^{\wedge} 2=4$.

Solution
Like question 6:
Evaluate $\iint_{S_{S}} x z d S$
where $S$ is the part of the plane $z=1+2 x-3 y$

Example: A unit sphere is made of material with surface density $z^{\wedge} 2 \mathrm{gm} / \mathrm{cm}^{\wedge} 2$ at point $(x, y, z)$. Find the mass of the sphere.
Solution: Evaluate $\iint_{\text {sphere }} z^{2} d S$

$$
\operatorname{Phi}(u, v)=(\sin v \cos u, \sin v \sin u, \cos v)
$$

$$
0 \leq u \leq 2 \pi, 0 \leq v \leq \pi
$$

$$
\begin{aligned}
& T_{-} u=(-\sin v \sin u, \sin v \cos u, 0) \\
& T_{-} v=(\cos v \cos u, \cos v \sin u,-\sin v)
\end{aligned}
$$

$$
T_{-} u \times T_{-} v=(-\sin \wedge 2 v \cos u,-\sin \wedge 2 v \sin u,-\sin v \cos v)
$$

$$
\left\|T_{-} u \times T_{-} v\right\|=\sqrt{\sin \wedge 4 v+\sin \wedge 2 v \cos \wedge 2 v}=\sin v
$$

$$
\text { Mass }=\int_{0}^{2 \pi} \int_{0}^{\pi} \cos ^{2} v \cdot \sin v d v d u=\ldots
$$

Question: what is $z$ when expressed in ( $u, v$ )-coordinates?
a. $\sin v$
b. $\cos v$
c. $\tan v$
d. $\sin u$
e. $\cos u$

## Why it works:



The scaling factor by which the parallelogram area in the ( $x, y, z$ ) space is multiplied from the the little square in the $(u, v$,$) plane, is$
|| T_uxT_v \|

